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Master and Langevin equations for electromagnetic dissipation
and decoherence of density matrices
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Abstract. We set up a forward – backward path integral for a point particle in a bath of photons to derive
a master equation for the density matrix which describes electromagnetic dissipation and decoherence.
We also derive the associated Langevin equation. As an application, we recalculate the Wigner-Weisskopf
formula for the natural line width of an atomic state at zero temperature and find, in addition, the
temperature broadening caused by the decoherence term. Our master equation also yields the correct
Lamb shift of atomic levels. The two equations may have applications to dilute interstellar gases or to
few-particle systems in cavities.

PACS. 03.65.-w Quantum mechanics – 03.65.Yz Decoherence; open systems; quantum statistical methods
– 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.45.-a Nonlinear
dynamics and nonlinear dynamical systems

1 Introduction

The time evolution of a quantum-mechanical density ma-
trix ρ(x+a,x−a; ta) of a particle coupled to an external
electromagnetic vector potential A(x, t) is determined by
a forward – backward path integral [1]

(x+b, tb|x+a, ta)(x−b, tb|x−a, ta)∗ ≡
U(x+b,x−b, tb|x+a,x−a, ta)

=
∫
Dx+Dx− exp

{
i
~

∫ tb

ta

[
M

2
(
ẋ2

+ − ẋ2
−
)
− V (x+)

+V (x−)− e

c
ẋ+A(x+, t) +

e

c
ẋ−A(x−, t)

]}
, (1.1)

where x+(t) and x−(t) are two fluctuating paths connect-
ing the initial and final points x+a and x+b, and x−a and
x−b, respectively. In terms of this expression, the density
matrix ρ(x+b,x−b; tb) at a time tb is found from that at
an earlier time ta by the integral

ρ(x+b,x−b; tb) =
∫

dx+a dx−a

× U(x+b,x−b, tb|x+a,x−a, ta)ρ(x+a,x−a; ta). (1.2)
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The vector potential A(x, t) appearing in the electromag-
netic action Aem =

∫
d4x(E2 − B2)/2c in the radiation

gauge via E = Ȧ/c, B ≡ ∇ × A, is a superposition of
oscillators Xk(t) of frequency Ωk = c|k| in a volume V :

A(x, t) =
∑
k

fk(x)Xk(t), fk(x) =
eikx√

2V Ωk/c
,

∑
k

≡ V
∫

d3k

(2π)3
· (1.3)

These oscillators are assumed to be in equilibrium
at a finite temperature T , where we shall write
their time-ordered correlation functions as Gijkk′(t, t

′) =
〈T̂ X̂i

k(t), X̂j
−k′(t

′)〉 = δij tr
kk′ GΩk

(t, t′) ≡ δkk′(δij −
kikj/k2)GΩk

(t, t′), the transverse Kronecker symbol re-
sulting from the sum

∑
h=± ε

i(k, h)εj∗(k, h) over the two
polarization vectors of the vector potential A(x, t). For a
single oscillator of frequency Ω, one has for t > t′:

GΩ(t, t′) =
1
2

[AΩ(t, t′) + CΩ(t, t′)]

=
~

2MΩ

cosh
Ω

2
[~β − i(t− t′)]

sinh
~Ωβ

2

, t > t′ (1.4)

which is the analytic continuation of the periodic
imaginary-time Green function to τ = it. The de-
composition into AΩ(t, t′) and CΩ(t, t′) distinguishes
real and imaginary parts, which are commutator and
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anticommutator functions of the oscillator at temper-
ature T : CΩ(t, t′) ≡ 〈[X̂(t), X̂(t′)]〉T and AΩ(t, t′) ≡
〈[X̂(t), X̂(t′)]〉T , respectively. The thermal average of the
evolution kernel (1.1) is then given by the forward – back-
ward path integral

U(x+b,x−b, tb|x+a,x−a, ta) =
∫
Dx+(t)

∫
Dx−(t)

× exp
{

i
~

∫ tb

ta

dt
[
M

2
(ẋ2

+ − ẋ2
−)− (V (x+)− V (x−))

]
+

i
~
AFV[x+,x−]

}
. (1.5)

where exp{iAFV[x+,x−]/~} is the Feynman-Vernon influ-
ence functional . The influence action AFV[x+,x−] is the
sum of a dissipative and a fluctuating part AFV

D [x+,x−]
and AFV

F [x+,x−], respectively, whose explicit forms are

AFV
D [x+,x−] =

ie2

2~c2

∫
dt
∫

dt′Θ(t− t′)

×
[
ẋ+Cb(x+ t,x′+ t

′)ẋ′+ − ẋ+Cb(x+ t,x′− t
′)ẋ′−

− ẋ−Cb(x− t,x′+ t
′)ẋ′+ − ẋ−Cb(x− t,x′− t

′)ẋ′−
]

(1.6)

and

AFV
F [x+,x−] =

ie2

2~c2

∫
dt
∫

dt′Θ(t− t′)

×
[
ẋ+Ab(x+ t,x′+ t

′)ẋ′+ − ẋ+Ab(x+ t,x′− t
′)ẋ′−

− ẋ−Ab(x− t,x′+ t
′)ẋ′+ + ẋ−Ab(x− t,x′− t

′)ẋ′−
]
, (1.7)

where x±, x′± are short for x±(t), x±(t′), and
Cb(x− t,x′− t

′),Ab(x− t,x′− t
′) are 3× 3 commutator and

anticommutator functions of the bath of photons. They
are sums of correlation functions over the bath of the os-
cillators of frequency Ωk|, each contributing with a weight
fk(x)f−k(x′) = eik(x−x′) c/2ΩkV (the normalization fol-
lowing from the action

∫
d4x(E2−B2)/2c). Thus we may

write

Cijb (x t,x′ t′) =
∑
k

f−k(x)fk(x′)
〈

[X̂i
−k(t), X̂j

k(t′)]
〉
T

= −ic2~
∫

dω′d3k

(2π)4
σk(ω′)δij tr

kk eik(x−x′) sinω′(t− t′),

(1.8)

Aijb (x t,x′ t′) =
∑
k

f−k(x)fk(x′)
〈{
X̂i
−k(t), X̂j

k(t′)
}〉

T

=c2~
∫

dω′d3k

(2π)4
σk(ω′)δ

ijtr
kk coth

~ω′

2kBT
eik(x−x′)cosω′(t−t′),

(1.9)

where σk(ω′) is the spectral density contributed by the
oscillator of momentum k:

σk(ω′) ≡ 2π
2Ωk

[δ(ω′ −Ωk)− δ(ω′ +Ωk)]. (1.10)

At zero temperature, we recognize in (1.8) and (1.9) twice
the imaginary and real parts of the Feynman propagator of
a massless particle for t > t′, which in four-vector notation
with k = (ω/c,k) and x = (ct,x) reads

G(x, x′) =
1
2

[A(x, x′) + C(x, x′)]

=
∫

dω d3k

(2π)4

ic2~
ω2 −Ω2

k + iη
e−i[ω(t−t′)−k(x−x′)]

= c

∫
d4k

(2π)4
eik(x−x′) i~

k2 + iη
· (1.11)

where η is an infinitesimally small number > 0.
We shall now focus attention upon systems which are

so small that the effects of retardation can be neglected.
Then we can ignore the x-dependence in (1.8) and (1.9)
and find

Cijb (x t,x′ t′) ≈ Cijb (t, t′) = i
~

2πc
2
3
δij∂tδ(t− t′). (1.12)

Inserting this into (1.6) and integrating by parts, we ob-
tain two contributions. The first is a diverging term

∆Aloc[x+,x−] =
∆M

2

∫ tb

ta

dt (ẋ2
+ − ẋ2

−)(t), (1.13)

where

∆M ≡ −e
2

c2

∫
dω′d3k

(2π)4

σk(ω′)
ω′

δij tr
kk = − e2

3π2c3

∫ ∞
0

dk.

(1.14)

diverges linearly. This simply renormalizes the kinetic
terms in the path integral (1.5), renormalizing them to

i
~

∫ tb

ta

dt
Mren

2
(
ẋ2

+ − ẋ2
−
)
. (1.15)

By identifying M with Mren this renormalization may be
ignored.

The second term has the form

AFV
D [x+,x−] = −γM

2

∫ tb

ta

dt (ẋ+ − ẋ−)(t)(ẍ+ + ẍ−)R(t),

(1.16)

with the friction constant

γ ≡ e2

6πc3M
=

2
3
α

ωM
, (1.17)

where α ≡ e2/~c ≈ 1/137 is the fine-structure constant
and ωM ≡Mc2/~ the Compton frequency associated with
the mass M . In contrast to the ordinary friction constant,
this has the dimension 1/frequency.

Note that the retardation enforced by the Heaviside
function in the exponent of (1.6) removes the left-hand
half of the δ-function. It expresses the causality of the dis-
sipation forces, which is crucial for producing a probabil-
ity conserving time evolution of the probability distribu-
tion [2]. The superscript R in (1.16) accounts for this by
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indicating that the acceleration (ẍ+ + ẍ−)(t) is slightly
shifted with respect to the velocity factor (ẋ+ − ẋ−)(t)
towards an earlier time.

We now turn to the anticommutator function. Insert-
ing (1.10) and the friction constant γ from (1.17), it be-
comes

e2

c2
Ab(x t,x′ t′) ≈ 2γkBTK(t, t′), (1.18)

where

K(t, t′) = K(t− t′) ≡
∫ ∞
−∞

dω′

2π
K(ω′)e−iω′(t−t′), (1.19)

with a Fourier transform

K(ω′) ≡ ~ω′

2kBT
coth

~ω′

2kBT
, (1.20)

whose high-temperature expansion starts out like

K(ω′) ≈ KHT(ω′) ≡ 1 +
1
3

(
~ω′

2kBT

)2

. (1.21)

The function K(ω′) has the normalization K(0) = 1, giv-
ing K(t− t′) a unit time integral:∫ ∞

−∞
dtK(t− t′) = 1. (1.22)

Thus K(t− t′) may be viewed as a δ-function broadened
by quantum fluctuations.

With the function K(t, t′), the fluctuation part of the
influence functional in (1.5–1.7) becomes

AFV
F [x+,x−] = i

w

2~

∫ tb

ta

dt

×
∫ tb

ta

dt′ (ẋ+ − ẋ−)(t)K(t, t′) (ẋ+ − ẋ−)(t′). (1.23)

Here we have used the symmetry of the functionK(t, t′) to
remove the Heaviside functionΘ(t−t′) from the integrand,
extending the range of t′-integration to the entire interval
(ta, tb). We also have introduced the constant

w ≡ 2MkBTγ, (1.24)

for brevity.
At very high temperatures, the time evolution ampli-

tude for the density matrix is given by the path integral

U(x+b,x−b, tb|x+a,x−a, ta) =
∫
Dx+(t)

∫
Dx−(t)

× exp
{

i
~

∫ tb

ta

dt
[
M

2
(ẋ2

+−ẋ2
−)−(V (x+)−V (x−))

]}
× exp

{
− i

2~
Mγ

∫ tb

ta

dt (ẋ+ − ẋ−)(ẍ+ + ẍ−)R

− w

2~2

∫ tb

ta

dt (ẋ+ − ẋ−)2

}
, (1.25)

where the last term becomes local for high temperatures,
since K(t, t′) → δ(t − t′). This is the closed-time path in-
tegral of a particle in contact with a thermal reservoir. For
moderately high temperature, we should include also the
first correction term in (1.21) which adds to the exponent
an additional term

− w

24(kBT )2

∫ tb

ta

dt(ẍ+ − ẍ−)2. (1.26)

In the classical limit, the last term in (1.25) squeezes
the forward and backward paths together. The density
matrix (1.25) becomes diagonal, and the γ-term describes
classical radiation damping.

2 Master equation for time evolution
of density matrix

We now derive a Schrödinger-like differential equation de-
scribing the evolution of the density matrix ρ(x+a, x−a; ta)
in equation (1.2). In the standard derivation of such an
equation [3] one first makes the last term local via a
quadratic completion involving a fluctuating noise vari-
able η(t). Then one goes over to a canonical formulation
of the path integral (1.25), by rewriting it as a path inte-
gral

Uη(x+b,x−b, tb|x+a,x−a, ta) =∫
Dx+(t)

∫
Dx−(t)

∫ Dp+

(2π)3

∫ Dp−
(2π)3

× exp
{

i
~

∫ tb

ta

dt [p+ẋ+−p−ẋ−−Hη(p+,p−,x+,x−)]
}
.

(2.1)

Then Uη(x+b,x−b, tb|x+a,x−a, ta) satisfies the differential
equation

i~∂tUη(x ,y , t|xa,ya, ta) = Ĥη Uη(x ,y , t|xa,ya, ta).
(2.2)

The same equation is obeyed by the density matrix
ρ(x+,x−; ta).

At high temperatures where the action in the path in-
tegral (1.25) is local, we can set up directly a Hamiltonian
without the noise-averaging procedure. However, the stan-
dard procedure of going to a canonical formulation is not
applicable because of the high time derivatives of x(t) in
the action of (1.25). They can be transformed into canon-
ical momentum variables only by introducing several aux-
iliary independent variables v ≡ ẋ, b ≡ ẍ, . . . [4,5]. For
small dissipation, which we shall consider, it is preferable
to proceed in another way by going first to a canonical
formulation of the quantum system without electromag-
netism, and include the effect of the latter recursively. For
simplicity, we shall treat only the local limiting form of the
last term in (1.25). In this limit, we define a Hamilton-like
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operator as follows:

Ĥ ≡ 1
2M

(
p̂2

+ − p̂2
−
)

+ V (x+)− V (x−)

+
Mγ

2
(ˆ̇x+ − ˆ̇x−)(ˆ̈x+ + ˆ̈x−)R − i

w

2~
(ˆ̇x+ − ˆ̇x−)2.

(2.3)

Here ˆ̇x, ˆ̈x are abbreviations for the commutators

ˆ̇x ≡ i
~

[Ĥ, x̂], ˆ̈x ≡ i
~

[Ĥ, ˆ̇x]. (2.4)

A direct differentiation of equation (1.25) over time leads
to the conclusion that the density matrix ρ(x+, x−; ta)
satisfies the time evolution equation

i~∂tρ(x+, x−; ta) = Ĥρ(x+, x−; ta). (2.5)

At moderately high temperatures, we also include a
term coming from (1.26)

H1 ≡ i
w~

24(kBT )2
(ˆ̈x+ − ˆ̈x−)2. (2.6)

For systems with friction caused by a conventional heat
bath of harmonic oscillators as discussed by Caldeira and
Leggett [6], the analogous extra term was shown by Diosi
[7] to bring the Master equation to the general Lindblad
form [8] which ensures positivity of the probabilities re-
sulting from the solutions of (2.5).

It is useful to re-express (2.5) in the standard quantum-
mechanical operator form where the density matrix has a
bra–ket representation ρ̂(t) =

∑
mn ρnm(t)|m〉〈n|. Let us

denote the initial Hamilton operator of the system in (1.1)
by Ĥ = p̂2/2M + V̂ , then equation (2.5) with the term
(2.6) takes the operator form

i~∂tρ̂ = Ĥ ρ̂ ≡ [Ĥ, ρ̂] +
Mγ

2

(
ˆ̇xˆ̈xρ̂− ρ̂ˆ̈xˆ̇x + ˆ̇x ρ̂ ˆ̈x− ˆ̈x ρ̂ ˆ̇x

)
− iw

2~
[ˆ̇x, [ˆ̇x, ρ̂]]− iw~

24(kBT )2
[ˆ̈x, [ˆ̈x, ρ̂]]. (2.7)

The operator order in the terms in parentheses need ex-
planation. It is fixed by the retardation of ẍ± with respect
to ẋ± in (2.3), which implies that the associated operator
ˆ̈x(t) has a time argument which lies slightly before that
of ˆ̇x±, thus acting upon ρ̂ before the operator of velocity
ˆ̇x. This puts it to the right of ˆ̇x, i.e., next to ρ̂. On the
right-hand side of ρ̂, the time runs in the opposite direc-
tion such that ˆ̈x must lie left of ˆ̇x, again next to ρ̂. In
this way we obtain an operator order which ensures that
equation (2.7) conserves the total probability.

This property and the positivity of ρ̂ are guaranteed
by the observation, that equation (2.7) can be written in
the extended Lindblad form [8]

∂tρ̂ = − i
~

[Ĥ, ρ̂]−
2∑

n=1

(
1
2
L̂nL̂

†
nρ̂+

1
2
ρ̂L̂nL̂

†
n − L̂†nρ̂L̂n

)
.

(2.8)

with the two Lindblad operators

L̂1 ≡
√
w

2~
ˆ̇x, L̂2 ≡

√
3w

2~

(
ˆ̇x− i

~
3kBT

ˆ̈x
)
. (2.9)

Note that the operator order prevents the term ˆ̇xˆ̈xρ̂
from being a pure divergence. If we rewrite it as a sum of
a commutator and an anticommutator, [ˆ̇x, ˆ̈x]/2+{ˆ̇x, ˆ̈x}/2,
then the latter term is a pure divergence, and we can think
of the first two γ-terms in (2.7) as being due to an addi-
tional anti-Hermitian term in the Hamilton operator Ĥ,
the dissipation operator

Ĥγ =
γM

4
[ˆ̇x, ˆ̈x]. (2.10)

For a free particle with V (x) ≡ 0 and [Ĥ, p̂] = 0, one
has ˆ̇x± = p̂±/M to all orders in γ, such that the time
evolution equation (2.7) becomes

i~∂tρ̂ = [Ĥ, ρ̂]− iw
2M2~

[p̂, [p̂, ρ̂]]. (2.11)

In the momentum representation of the density matrix
ρ̂ =

∑
pp′ ρpp′ |p〉〈p′|, the last term simplifies to −iΓ ≡

−iw(p− p′)2/2M2~2 multiplying ρ̂, which shows that
a free particle does not dissipate energy by radiation,
and that the off-diagonal matrix elements decay with the
rate Γ .

In general, equation (2.3) is an implicit equation for
the Hamilton operator Ĥ. For small e2 it can be solved
approximately in a single iteration step, replacing ˆ̇x by
p̂/M and ˆ̈x = −∇V/M in equation (2.7).

The validity of this iterative procedure is most easily
proven in the time-sliced path integral. The final slice of
infinitesimal width ε reads

U(x+b,x−b, tb|x+a,x−a, tb − ε) =
∫

dp+(tb)
(2π)3

×
∫

dp−(tb)
(2π)3

ei{p+(tb)[x+(tb)−x+(tb−ε)]−p−ẋ−−H(tb)}/~.

(2.12)

Consider now a term of the generic form Ḟ+(x+)F−(x−)
in H. When differentiating U(x+b,x−b, tb|x+a,x−a, tb− ε)
with respect to the final time tb, the integrand receives a
factor −H(tb). The term Ḟ+(x+)F−(x−) in H has the ex-
plicit form ε−1 [F+(x+(tb))− F+(x+(tb − ε))]F−(x−(tb)).
It it can be taken out of the integral, yielding

ε−1 [F+(x+(tb))U − UF+(x+(tb − ε))]F−(x−(tb)).
(2.13)

In operator language, the amplitude U is equal to Û ≈
1 − iεĤ/~, such the term Ḟ+(x+)F−(x−) in H yields an
operator

i
~

[
Ĥ, F̂+(x+)

]
F−(x−) (2.14)
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in the differential operator for the time evolution.
For functions of the second derivative ẍ we have to

split off the last two time slices and convert the two inter-
mediate integrals over x into operator expressions, which
obviously leads to the repeated commutator of Ĥ with x̂,
and so on.

3 Line width

Let us apply the master equation (2.7) to atoms, where
V (x) is the Coulomb potential, assuming it to be initially
in an eigenstate |i〉 of H, with a density matrix ρ̂(0) =
|i〉〈i|. Since atoms decay rather slowly, we may treat the
γ-term in (2.7) perturbatively. It leads to a time derivative
of the density matrix

∂t〈i|ρ̂(t)|i〉 = − γ

~M
〈i|[Ĥ, p̂] p̂ ρ̂(0)|i〉

=
γ

M

∑
f 6=i

ωif 〈i|p|f〉〈f |p|i〉

= −Mγ
∑
f

ω3
if |xfi|2, (3.1)

where ~ωif ≡ Ei − Ef , and xfi ≡ 〈f |x|i〉 are the matrix
elements of the dipole operator.

An extra width, which we have not seen discussed
in the literature so far, comes from the last two terms
in (2.7):

∂t〈i|ρ̂(t)|i〉 = − w

M2~2
〈i|p2|i〉 − w

12M2(kBT )2
〈i|ṗ2|i〉

= −w
∑
n

ω2
if

[
1 +

~2ω2
if

12(kBT )2

]
|xfi|2. (3.2)

This time dependence is caused by spontaneous emission
and induced emission and absorption. To identify the dif-
ferent contributions, we rewrite the spectral decomposi-
tions (1.8) and (1.9) in the x-independent approxima-
tion as

Cb(t, t′) +Ab(t, t′) =
4π
3
~
∫

dω′d3k

(2π)4

π

2MΩk

×
{

1 + coth
~ω′

2kBT

}
[δ(ω′ −Ωk)− δ(ω′ +Ωk)] e−iω′(t−t′),

(3.3)

as

Cb(t, t′) +Ab(t, t′) =
4π
3
~
∫

dω′d3k

(2π)4

π

2MΩk

×
{

2δ(ω′ −Ωk) +
2

e~Ωk/kBT − 1

× [δ(ω′ −Ωk) + δ(ω′ +Ωk)]
}

e−iω′(t−t′). (3.4)

Following Einstein’s intuitive interpretation, the first term
in curly brackets is due to spontaneous emission, the other

two terms accompanied by the Bose occupation function
account for induced emission and absorption. For high and
intermediate temperatures, (3.4) has the expansion

4π
3
~
∫

dω′d3k

(2π)4

π

2MΩk

{
2δ(ω′ −Ωk) +

(
2kBT

~Ωk
− 1

+
1
6
~Ωk

kBT

)
[δ(ω′ −Ωk) + δ(ω′ +Ωk)]

}
e−iω′(t−t′). (3.5)

The first term in curly brackets is due to spontaneous
emission. It contributes a term −2Mγ

∑
f<i ω

3
if |xfi|2 to

the rate of change ∂t〈i|ρ̂(t)|i〉. This differs from the right-
hand side of equation (3.1) in two important respects.
First, the sum is restricted to the lower states f < i with
ωif > 0, since the δ-function allows only for decays. Sec-
ond, there is an extra factor 2. Indeed, by comparing (3.3)
with (3.5) we see that the spontaneous emission receives
equal contributions from the 1 and the coth(~ω′/2kBT )
in the curly brackets of (3.3), i.e., from dissipation and
fluctuation terms Cb(t, t′) and Ab(t, t′).

Thus our master equation yields for the natural line
width of atomic levels the equation

Γ = 2Mγ
∑
f<i

ω3
if |xfi|2, (3.6)

which is the historic Wigner-Weisskopf formula.
In terms of Γ , the rate (3.1) can therefore be written as

∂t〈i|ρ̂(t)|i〉 = −Γ +Mγ
∑
f<i

ω3
if |xfi|2

+Mγ
∑
f>i

|ωif |3 |xfi|2. (3.7)

The second and third terms do not contribute to the total
rate of change of 〈i|ρ̂(t)|i〉 since they are canceled by the
induced emission and absorption terms associated with
the −1 in the big parentheses of the fluctuation part of
(3.5). The finite lifetime changes the time dependence of
the state |i, t〉 from |i, t〉 = |i, 0〉e−iEt to |i, 0〉e−iEt−Γt/2.

Note that due to the restriction to f < i in (3.6),
there is no operator local in time whose expectation value
is Γ . Only the combination of spontaneous and induced
emissions and absorptions in (3.7) can be obtained from
a local operator, which is in fact the dissipation operator
(2.10).

For all temperatures, the spontaneous and induced
transitions together lead to the rate of change:

∂t〈i|ρ̂(t)|i〉 = −2Mγ

×

∑
f<i

ω3
if +

∑
f

ω3
if

1
e~ωif/kBT − 1

 |xfi|2.
(3.8)

For a state with principal quantum number n, the temper-
ature effects become detectable only if T becomes larger
than −1/(n+ 1)2 + 1/n2 ≈ 2/n3 times the Rydberg tem-
perature TRy = 157886.601 K. Thus we must go to n >∼ 20
to have observable effects at room temperature.
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4 Lamb shift

For atoms, the Feynman influence functional (1.5) allows
us to calculate the celebrated Lamb shift. Being interested
in the time behavior of the pure-state density matrix ρ =
|i〉〈i|, we may calculate the effect of the actions (1.6) and
(1.7) perturbatively as follows: Consider the action (1.6),
and in it the first term involving x+(t) and x+(t′), and
integrate the external positions in the path integral (1.5)
over the initial wave functions, forming

Uii,tb;ii,ta =
∫

dx+b dx−b

∫
dx+a dx−a〈i|x+b〉〈i|x−b〉

× U(x+b,x−b, tb|x+a,x−a, ta)〈x+b|i〉〈x−b|i〉.
(4.1)

To lowest order in γ, the effect of the Cb-term in (1.6)
can be evaluated in the local approximation (1.12) as fol-
lows. We take the linear approximation to the exponential
exp[

∫
dtdt′O(t, t′)] ≈ 1+

∫
dtdt′O(t, t′) and propagate the

initial state with the help of the amplitude Uii,t′;ii,ta to the
first time t′, then with Ufi,t;fi,t′ to the later time t, and
finally with Uii,ta;ii,t to the final time tb. The intermediate
state between the times t and t′ are arbitrary and must be
summed. Details of how to do such a perturbation expan-
sion are given in Section 3.10 of the textbook [3]. Thus we
find

∆CUii,tb;ii,ta = i
e2

2~2c2

∫ tb

ta

dtdt′
∑
f

∫
dx+

×
∫

dx′+ Uii,ta;ii,t〈i|x+〉x+〈x+|f〉

× [∂t∂t′Cb(t, t′)]Ufi,t;fi,t′〈f |x′+〉x′+〈x′+|i〉Uii,t′;ii,ta .
(4.2)

Inserting Uii,ta;ii,t = e−iEi(ta−t)/~ etc., this becomes

∆CUii,tb;ii,ta =

− e2

2~2c2

∫ tb

ta

dtdt′ 〈i|x̂(t) [∂t∂t′Cb(t, t′)] x̂(t′)|i〉

=− e2

2~2c2

∑
f

∫ tb

ta

dtdt′eiωif(t−t′)〈i|ˆ̇x|f〉Cb(t, t′)〈f |ˆ̇x|i〉.

(4.3)

Expressing Cijb (t, t′) of equation (1.12) in the form

Cijb (t, t′) =
~

2πc
2
3
δij
∫

dω
2π

ω e−iω(t−t′), (4.4)

the integration over t and t′ yields

∆CUii,tb;ii,ta =

− i
e2

4π~c3
2
3

∫ tb

ta

dt
∫

dω
2π

∑
f

ω

ω − ωif − iη
|ˆ̇xfi|2. (4.5)

The same treatment is applied to the Ab in the action
(1.7), where the first term involving x+(t) and x+(t′)
changes (4.5) to

∆Uii,tb;ii,ta =

− i
e2

4π~c3
2
3

∫ tb

ta

dt
∫

dω
2π

∑
f

ω

ω − ωif + iη

×
(

1 + coth
~ω

2kBT

)
|ˆ̇xfi|2. (4.6)

The ω-integral is conveniently split into a zero-
temperature part and a finite-temperature correction

I(ωif , 0) ≡
∫ ∞

0

dω
π

∑
f

ω

ω − ωif + iη
, (4.7)

and

∆IT (ωif , T ) ≡ 2
∫ ∞

0

dω
π

∑
f

ω

ω − ωif + iη
1

e~ω/kBT − 1
·

(4.8)

Decomposing as usual 1/(ωif − ω + iη) = P/(ω − ωif ) −
iπδ(ωif − ω), the imaginary part of the ω-integral yields
half of the natural line width in (3.1). The other half comes
from the part of the integral (1.6) involving x−(t) and
x−(t′). The principal-value part of the zero-temperature
integral diverges linearly, the divergence yielding again the
mass renormalization (1.13). Subtracting this divergence
from I(ωif , 0), the remaining integral has the same form as
I(ωif , 0), but with ω in the numerator replaced by ωif = 0.
This integral diverges logarithmically like (ωif/π) log[(Λ−
ωif )/|ωif |], where Λ is Bethe’s cutoff [9]. For Λ � |ωif |,
the result (4.5) implies an energy shift of the atomic level
|i〉:

∆Ei =
e2

4πc3
2

3π

∑
f

ω3
if |x̂fi|2 log

Λ

|ωif |
, (4.9)

which is the Lamb shift . Usually, the weakly varying
logarithm is approximated by a weighted average L =
log[Λ/〈|ωif |〉] over energy levels and taken out of the in-
tegral [10]. Then the energy (4.9) can be attributed to an
extra term

ĤLS ≈ −i
L

π

Mγ

2
[ˆ̇x, ˆ̈x] (4.10)

in the Hamiltonian (2.7). In this form, the Lamb shift ap-
pears as a Hermitian logarithmically divergent correction
to the operator (2.10) governing the spontaneous emission
of photons.

To lowest order in γ, the commutator becomes,
for V (x) = −~ c α/r, equal to −i [p̂, ˆ̇p] /M2 =
~∇2V (x)/M2 = (~2c α/M2) 4πδ(3)(x), leading to ∆Ei =
(4α2~3L/3M2c)〈i|δ(3)(x)|i〉. For hydrogen with prin-
cipal quantum number n one has 〈n|δ(3)(x)|n〉 =
α3M3c3/~3πn3.
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Fig. 1. Behavior of function 6J(z)/π2.

At finite temperature, (4.9) changes to

∆Ei =
e2

4πc3
2

3π

∑
f

ω3
if |x̂fi|2

×
[

log
Λ

|ωif |
+
(
kBT

~ωij

)2

J

(
~ωif
kBT

)]
, (4.11)

where J(z) denotes the integral

J(z) ≡ z
∫ ∞

0

dz
P

z′ − z
z′

ez′ − 1
, (4.12)

which has the low-temperature (large-z) expansions
J(z) = −π2/6− 2ζ(3)/z + . . . , and goes to zero for high
temperature (small z) like −z log z, as shown in Figure 1.

5 Langevin equations

For high γT , the last term in the forward – backward
path integral (1.25) makes the size of the fluctuations in
the difference between the paths y(t) ≡ x+(t)−x−(t) very
small. It is then convenient to introduce the average of the
two paths as x(t) ≡ [x+(t) + x−(t)] /2, and expand

V
(
x +

y
2

)
− V

(
x− y

2

)
∼ y ·∇V (x) +O(y3) . . . ,

(5.1)

keeping only the first term. We further introduce an aux-
iliary quantity η(t) by

η̇(t) ≡M ẍ(t)−Mγ ˙̈x(t) +∇V (x(t)). (5.2)

With this, the exponential function in (1.25) becomes

exp
[
− i
~

∫ tb

ta

dt ẏη − w

2~2

∫ tb

ta

dt ẏ2(t)
]
, (5.3)

where w is the constant (1.24).
Consider now the diagonal part of the amplitude (1.25)

with x+b = x−b ≡ xb and x+a = x−a ≡ xa, implying that
yb = ya = 0. It represents a probability distribution

P (xb tb|xa ta) ≡ |(xb, tb|xa, ta)|2 ≡ U(xb,xb, tb|xa,xa, ta).
(5.4)

Now the variable y can simply be integrated out in (5.3),
and we find the probability distribution

P [η] ∝ exp
[
− 1

2w

∫ tb

ta

dtη2(t)
]
. (5.5)

The expectation value of an arbitrary functional of F [x]
can be calculated from the path integral

〈F [x]〉η ≡ N
∫
DxP [η]F [x], (5.6)

where the normalization factor N is fixed by the condition
〈 1 〉 = 1. By a change of integration variables from x(t)
to η(t), the expectation value (5.6) can be rewritten as a
functional integral

〈F [x]〉η ≡ N
∫
Dη P [η] F [x]. (5.7)

Note that the probability distribution (5.5) is
~-independent. Hence in the approximation (5.1) we
obtain the classical Langevin equation. In principle, the
integrand contains a factor J−1[x], where J [x] is the
functional Jacobian

J [x] ≡ Det [δηi(t)/δxj(t′)]

= det[
(
M∂2

t −Mγ∂3R
t

)
δij +∇i∇jV (x(t))]. (5.8)

It can be shown that the determinant is unity, due to
the retardation of the friction term [2], thus justifying its
omission in (5.7).

The path integral (5.7) may be interpreted as an expec-
tation value with respect to the solutions of a stochastic
differential equation (5.2) driven by a Gaussian random
noise variable η(t) with a correlation function

〈ηi(t)ηj(t′)〉T = δijw δ(t− t′). (5.9)

Since the dissipation carries a third time derivative, the
treatment of the initial conditions is nontrivial and will be
discussed elsewhere. In most physical applications γ leads
to slow decay rates. In this case the simplest procedure to
solve (5.2) is to write the stochastic equation as

M ẍ(t) +∇V (x(t)) = η̇(t) +Mγ ˙̈x(t), (5.10)

and solve it iteratively, first without the γ-term, inserting
the solution on the right-hand side, and such a procedure
is equivalent to a perturbative expansion in γ in equa-
tion (1.25).

Note that the lowest iteration of equation (5.10) with
η ≡ 0 can be multiplied by ẋ and leads to the equation
for the energy change of the particle

d
dt

[
M

2
ẋ2 + V (x)−Mγẋẍ

]
= −Mγ ẍ2. (5.11)

The right-hand side is the classical electromagnetic power
radiate by an accelerated particle. The extra term in the
brackets is known as Schott term [11].
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6 Conclusion

We have calculated the master equation for the time evolu-
tion of the quantum mechanical density matrix describing
dissipation and decoherence of a point particle interacting
with the electromagnetic field. The Hamilton-like evolu-
tion operator was specified recursively. To lowest order in
the electromagnetic coupling strength, we have recovered
the known Lamb shift and natural line width of atomic lev-
els. In addition, we have calculated the additional broad-
ening caused by the coupling of the photons to the thermal
bath.

Our equation may have applications to dilute inter-
stellar gases or, after a reformulation in a finite volume,
to few-particle systems contained in cavities. So far, a mas-
ter equation has been set up only for a finite number of
modes [12].

Let us finally point out that results similar to those
in Sections 3 and 4 have been derived with conven-
tional quantum-mechanical methods by many authors
[13]. There has also been a discussion closer in spirit to
ours by Diosi [15], Landau [16], who consider, however,
only the zero-temperature case and do not find a Lindblad
form for the master equation. There is further a paper by
Anastopoulos and Zoupas [17], who study the behavior of
electron fields in a photon bath.

In a sequel paper we shall present a similar treatment
of a particle in a thermal bath of gravitons [18].

This research was supported by a grant from a governmental
German university special program HSP III-Potsdam.
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